Abstract
This study follows the geochemistry of nitrogen in a Cretaceous and unconfined sedimentary aquifer in the city of Urânia (Brazil) over 20 years. Although the sewer network was built in the 1970s, the nitrate contamination problem (>45 mg/L-NO3−) persists to this day. The oldest urbanization areas located in the north of the city initially used cesspits for wastewater and currently present the highest nitrate concentrations (>120 mg/L-NO3−), with the plume reaching the deeper aquifer portions (up to 100 m). The contamination is not as dramatic in the south part of the city, where urbanization including installation of the sewage network with PVC pipes that are more resistant to leak than the old ceramic networks occurred after 1985. Based on the constructive well profiles, three hydrogeochemical zones were established: shallow (<20 m deep), with average nitrate of 63 mg/L-NO3−; intermediate (20–60 m), with 30 mg/L-NO3−; and deep (>60 m), with 17 mg/L-NO3−. The current total nitrate mass in the aquifer exceeds 731 kg-NO3−. Numerical flow (Modflow) and transport (MT3D) model scenarios support the hypothesis that the nitrate contamination is caused by substantial infiltration of nitrogen through the cesspits until the 1970s, but after the 1990s, leaks from the sewer network should be responsible for the maintenance of the recently observed high concentrations of nitrate.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献