Abstract
Volcanic highlands supply water to 40% of the world’s population. Soil degradation threatens this water supply. Studies on geohydrology that affect the effectiveness of land and water management (LWM) practices in reducing soil degradations are limited. To aid in the effectiveness of LWM practices, we conducted a field experiment in the Gomit watershed in the semihumid Ethiopian Highlands on the interaction of hydrogeology and LWM practices. We found that in a watershed with strongly faulted tertiary basalt, 30% of the rainfall was drained through faults to another basin. Consequently, the discharge at the outlet was less than half of that of other watersheds with quaternary basalts. Despite the high sediment concentration, i.e., around 15 g L−1, in the Gomit watershed, the sediment yield of less than 4 Mg ha−1 a−1 was below average for the agricultural watershed in Ethiopia because of the low runoff response. While some faults facilitated drainage, others acted as a barrier. Groundwater stored behind the barriers was used as a municipal potable water source. Since the effectiveness of LWM practices depends on the amount of erosion that can be prevented, considerations of country-wide prioritizing of investments in land and water management practices should include the geology of the watersheds.
Funder
United States Agency for International Development
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献