Effect of Socioeconomic Variables in Predicting Global Fire Ignition Occurrence

Author:

Mukunga Tichaona1,Forkel Matthias2,Forrest Matthew3ORCID,Zotta Ruxandra-Maria1,Pande Nirlipta1,Schlaffer Stefan1,Dorigo Wouter1ORCID

Affiliation:

1. Climate and Environmental Remote Sensing Research Unit, Department of Geodesy and Geoinformation, Technische Universität Wien (TU Wien), Wiedner Hauptstraße 8-10, 1040 Vienna, Austria

2. Institute for Photogrammetry and Remote Sensing, Technische Universität Dresden (TU Dresden), 01062 Dresden, Germany

3. Senckenberg Biodiversity and Climate Research Centre (SBiK-F), 60325 Frankfurt am Main, Germany

Abstract

Fires are a pervasive feature of the terrestrial biosphere and contribute large carbon emissions within the earth system. Humans are responsible for the majority of fire ignitions. Physical and empirical models are used to estimate the future effects of fires on vegetation dynamics and the Earth’s system. However, there is no consensus on how human-caused fire ignitions should be represented in such models. This study aimed to identify which globally available predictors of human activity explain global fire ignitions as observed by satellites. We applied a random forest machine learning framework to state-of-the-art global climate, vegetation, and land cover datasets to establish a baseline against which influences of socioeconomic data (cropland fraction, gross domestic product (GDP), road density, livestock density, grazed lands) on fire ignition occurrence were evaluated. Our results showed that a baseline random forest without human predictors captured the spatial patterns of fire ignitions globally, with hotspots over Sub-Saharan Africa and South East Asia. Adding single human predictors to the baseline model revealed that human variables vary in their effects on fire ignitions and that of the variables considered GDP is the most vital driver of fire ignitions. A combined model with all human predictors showed that the human variables improve the ignition predictions in most regions of the world, with some regions exhibiting worse predictions than the baseline model. We concluded that an ensemble of human predictors can add value to physical and empirical models. There are complex relationships between the variables, as evidenced by the improvement in bias in the combined model compared to the individual models. Furthermore, the variables tested have complex relationships that random forests may struggle to disentangle. Further work is required to detangle the complex regional relationships between these variables. These variables, e.g., population density, are well documented to have substantial effects on fire at local and regional scales; we determined that these variables may provide more insight at more continental scales.

Funder

Austrian Science Fund

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3