Evaluating Traffic Operation Conditions during Wildfire Evacuation Using Connected Vehicles Data

Author:

Ahmad Salman1ORCID,Ali Asad1,Ahmed Hafiz Usman1,Huang Ying1,Lu Pan2ORCID

Affiliation:

1. Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58102, USA

2. Department of Transportation, Logistic and Finance, North Dakota State University, Fargo, ND 58102, USA

Abstract

With climate change and the resulting rise in temperatures, wildfire risk is increasing all over the world, particularly in the Western United States. Communities in wildland–urban interface (WUI) areas are at the greatest risk of fire. Such fires cause mass evacuations and can result in traffic congestion, endangering the lives of both citizens and first responders. While existing wildfire evacuation research focuses on social science surveys and fire spread modeling, they lack data on traffic operations during such incidents. Additionally, traditional traffic data collection methods are unable to gather large sets of data on historical wildfire events. However, the recent availability of connected vehicle (CV) data containing lane-level precision historical vehicle movement data has enabled researchers to assess traffic operational performance at the region and timeframe of interest. To address this gap, this study utilized a CV dataset to analyze traffic operations during a short-notice evacuation event caused by a wildfire, demonstrating that the CV dataset is an effective tool for accurately assessing traffic delays and overall traffic operation conditions during the selected fire incident. The findings also showed that the selected CV dataset provides high temporal coverage and similar travel time estimates as compared to an alternate method of travel time estimation. The study thus emphasized the importance of utilizing advanced technologies, such as CV data, to develop effective evacuation strategies and improve emergency management.

Funder

U.S. Department of Transportation

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3