Affiliation:
1. Center for Offshore Engineering and Safety Technology, China University of Petroleum (East China), Qingdao 266580, China
2. College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
Abstract
Hydrogen–gasoline hybrid refueling stations can minimize construction and management costs and save land resources and are gradually becoming one of the primary modes for hydrogen refueling stations. However, catastrophic consequences may be caused as both hydrogen and gasoline are flammable and explosive. It is crucial to perform an effective risk assessment to prevent fire and explosion accidents at hybrid refueling stations. This study conducted a risk assessment of the refueling area of a hydrogen–gasoline hybrid refueling station based on the improved Accident Risk Assessment Method for Industrial Systems (ARAMIS). An improved probabilistic failure model was used to make ARAMIS more applicable to hydrogen infrastructure. Additionally, the accident consequences, i.e., jet fires and explosions, were simulated using Computational Fluid Dynamics (CFD) methods replacing the traditional empirical model. The results showed that the risk levels at the station house and the road near the refueling area were 5.80 × 10−5 and 3.37 × 10−4, respectively, and both were within the acceptable range. Furthermore, the hydrogen dispenser leaked and caused a jet fire, and the flame ignited the exposed gasoline causing a secondary accident, considered the most hazardous accident scenario. A case study was conducted to demonstrate the practicability of the methodology. This method is believed to provide trustworthy decisions for establishing safe distances from dispensers and optimizing the arrangement of the refueling area.
Funder
National Key R&D Program of China
Subject
Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献