Investigation of the Residual Mechanical and Porosity Properties of Cement Mortar under Axial Stress during Heating

Author:

Gao Zhifei,Wang Linbing,Yang HailuORCID

Abstract

The preload load on concrete during heating is considered to cause a ‘densification’ of cement mortar which led to the increased compressive strength. In order to assess the influence of coupled load and heating effects on porosity characteristics of concrete, the porosity of mortar after mechanical and thermal loading was measured by X-ray computed tomography (X-ray CT). The preload at pre-stress ratios of 0, 0.2, 0.4, and 0.6 (ratio of stress applied to the specimen to its compressive strength at room temperature) were applied on mortar specimens during heating. The residual compressive strengths of the heated and stressed mortar specimens were tested after cooling to room temperature. Combined analyses of the residual compressive strength test results and porosity test results, it shows that the porosity of the specimens under the coupled stressing and heating conditions were slightly lower than that under the unstressed conditions; however, the conclusion that the increase of compressive strength of stressed mortar was caused by the ‘densification’ of cement paste was insufficient. The preload reduced the cracks in the mortar, especially the crack induced due to the thermal mismatch in aggregates and hardened cement paste (HCP), and this may account for the increased compressive strength of stressed mortar.

Funder

State Key Laboratory of Disaster Reduction in Civil Engineering

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3