Wavelet Scattering and Neural Networks for Railhead Defect Identification

Author:

Jin YangORCID

Abstract

Accurate and automatic railhead inspection is crucial for the operational safety of railway systems. Deep learning on visual images is effective in the automatic detection of railhead defects, but either intensive data requirements or ignoring defect sizes reduce its applicability. This paper developed a machine learning framework based on wavelet scattering networks (WSNs) and neural networks (NNs) for identifying railhead defects. WSNs are functionally equivalent to deep convolutional neural networks while containing no parameters, thus suitable for non-intensive datasets. NNs can restore location and size information. The publicly available rail surface discrete defects (RSDD) datasets were analyzed, including 67 Type-I railhead images acquired from express tracks and 128 Type-II images captured from ordinary/heavy haul tracks. The ultimate validation accuracy reached 99.80% and 99.44%, respectively. WSNs can extract implicit signal features, and the support vector machine classifier can improve the learning accuracy of NNs by over 6%. Three criteria, namely the precision, recall, and F-measure, were calculated for comparison with the literature. At the pixel level, the developed approach achieved three criteria of around 90%, outperforming former methods. At the defect level, the recall rates reached 100%, indicating all labeled defects were identified. The precision rates were around 75%, affected by the insignificant misidentified speckles (smaller than 20 pixels). Nonetheless, the developed learning framework was effective in identifying railhead defects.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3