Improved JPS Path Optimization for Mobile Robots Based on Angle-Propagation Theta* Algorithm

Author:

Luo Yuan,Lu Jiakai,Qin Qiong,Liu Yanyu

Abstract

The Jump Point Search (JPS) algorithm ignores the possibility of any-angle walking, so the paths found by the JPS algorithm under the discrete grid map still have a gap with the real paths. To address the above problems, this paper improves the path optimization strategy of the JPS algorithm by combining the viewable angle of the Angle-Propagation Theta* (AP Theta*) algorithm, and it proposes the AP-JPS algorithm based on an any-angle pathfinding strategy. First, based on the JPS algorithm, this paper proposes a vision triangle judgment method to optimize the generated path by selecting the successor search point. Secondly, the idea of the node viewable angle in the AP Theta* algorithm is introduced to modify the line of sight (LOS) reachability detection between two nodes. Finally, the paths are optimized using a seventh-order polynomial based on minimum snap, so that the AP-JPS algorithm generates paths that better match the actual robot motion. The feasibility and effectiveness of this method are proved by simulation experiments and comparison with other algorithms. The results show that the path planning algorithm in this paper obtains paths with good smoothness in environments with different obstacle densities and different map sizes. In the algorithm comparison experiments, it can be seen that the AP-JPS algorithm reduces the path by 1.61–4.68% and the total turning angle of the path by 58.71–84.67% compared with the JPS algorithm. The AP-JPS algorithm reduces the computing time by 98.59–99.22% compared with the AP-Theta* algorithm.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference36 articles.

1. Path planning for a new mine rescue robot base on visual tangent graphs;Liu;Jilin Daxue Xuebao,2011

2. Research and Experiment on Recognition and Location System for Citrus Picking Robot in Natural Environment;Yang;Nongye Jixie Xuebao,2019

3. Complete Coverage Navigation of Cleaning Robots Using Triangular-Cell-Based Map

4. An overview: on path planning optimization criteria and mobile robot navigation

5. Application of Fuzzy Logic and PID Controller for Mobile Robot Navigation;Babunski;Proceedings of the 9th Mediterranean Conference on Embedded Computing (MECO),2020

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3