EplusLauncher: An API to Perform Complex EnergyPlus Simulations in MATLAB® and C#

Author:

Gordillo Germán CamposORCID,Ruiz Germán RamosORCID,Stauffer YvesORCID,Dasen StephanORCID,Bandera Carlos FernándezORCID

Abstract

There is a growing concern about how to mitigate climate change, in which the production and use of energy has a great impact as one of the largest sources of global greenhouse gases (GHG). Buildings are responsible for a large percentage of these emissions. Therefore, there has been an increase in research in this area, in order to reduce their consumption and increase their efficiency. One of the major simulation programs used in optimization research is EnergyPlus. The purpose of this software is the complete energy simulation of a building, although it lacks tools to analyze its results and, above all, to manage and edit its simulations. For this reason, we developed an application programming interface (API) that serves to merge two areas which are highly demanded by researchers: energy building simulation (using EnergyPlus) and tools for the management and design of research experiments (in this case, MATLAB®). The developed API allows the user to perform complex simulations using EnergyPlus in a simple way, as it allows the editing of each simulation and the analysis of the simulation results through MATLAB®. In addition, it enables the user to simultaneously run multiple simulations, using either all computer core processors or a selection of them (i.e., allowing parallel computing), reducing the simulation time. The API was developed in the C# language, such that it can be used with any software that can import . N E T libraries.

Funder

Horizon 2020

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3