Analysis of the Magnetohydrodynamic Behavior of the Fully Developed Flow of Conducting Fluid

Author:

Fonseca Wellington da SilvaORCID,Araújo Ramon C. F.,Silva Marcelo de Oliveira e,Cruz Daniel Onofre de A.

Abstract

Important industrial applications are based on magnetohydrodynamics (MHD), which concerns the flow of electrically conducting fluids immersed in external magnetic fields. Using the Finite Volume Method, we performed a 3D numerical study of the MHD flow of a conducting fluid in a circular duct. The flow considered was laminar and fully developed. Along the initial section of the duct, there were magnets placed around the duct producing magnetic fields in the radial direction. Two arrangements of magnetic field orientation were considered: fields pointing toward and away from the duct’s center alternately, and all fields pointing toward the duct’s center. For each arrangement of magnets, various intensities of magnetic fields were considered to evaluate two effects: the influence of the magnetic field on the flow velocity, and the influence of the flow velocity on magnetic field induction. It was found that for the second arrangement of magnets and Hartmann numbers larger than 10, the flow velocity was reduced by as much as 35%, and the axial magnetic induction was as high as the field intensity applied by each magnet. Those effects were negligible for the first arrangement and low fields because of the distribution of field lines inside the duct for these situations.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference38 articles.

1. An Introduction to Magnetohydrodynamics;Davidson,2017

2. Theory of the laminar flow of an electrically conductive liquid in a homogeneous magnetic field;Hartmann;Math.-Fys. Meddelelser,1937

3. Existence of Electromagnetic-Hydrodynamic Waves

4. A Textbook of Magnetohydrodynamics;Shercliff,1965

5. Engineering Magnetohydrodynamics;Sutton,2006

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3