Modeling and Predictive Analysis of Small Internal Leakage of Hydraulic Cylinder Based on Neural Network

Author:

Guo Yuan,Xiong Ge,Zeng Liangcai,Li Qingfeng

Abstract

The internal leakage of a hydraulic cylinder is an inevitable hydraulic system failure that seriously affects the working efficiency of the hydraulic system. Therefore, it is very important to accurately identify and predict leakage data in the hydraulic cylinder. In this paper, a model is proposed to simulate a small internal leakage of hydraulic cylinders, to convert the amount of leakage of hydraulic oil into strain signals through high-precision strain gauges and to train the collected strain signals using various neural networks to form a computational model and obtain prediction results from the model. The neural networks applied in this paper are convolutional neural networks, BP neural networks, T-S neural networks and Elman neural networks. The predicted results of the neural network are compared with the actual leakage amount. The results show that the prediction accuracy of the above four kinds of neural networks are all above 90%, of which the convolutional neural network is the most accurate. This research provides scientific and technical support for measuring and predicting small leaks.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference24 articles.

1. The analysis and improvement on hydraulic cylinder’s rod seals leakage;Honghui;Hydraul. Pneum. Seals,2006

2. Research on Hydraulic Cylinder Internal Leakage Detection Methods;Wang;Mach. Tool Hydraul.,2016

3. Analysis of leakage in hydraulic cylinder;Taiping;Technol. Manag.,2017

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3