A Novel Gate Drive Circuit for Suppressing Turn-on Oscillation of Non-Kelvin Packaged SiC MOSFET

Author:

Zhao Hongyan,Chen Jiangui,Li YanORCID,Lin Fei

Abstract

Compared with a silicon MOSFET device, the SiC MOSFET has many benefits, such as higher breakdown voltage, faster action speed and better thermal conductivity. These advantages enable the SiC MOSFET to operate at higher switching frequencies, while, as the switching frequency increases, the turn-on loss accounts for most of the loss. This characteristic severely limits the applications of the SiC MOSFET at higher switching frequencies. Accordingly, an SRD-type drive circuit for a SiC MOSFET is proposed in this paper. The proposed SRD-type drive circuit can suppress the turn-on oscillation of a non-Kelvin packaged SiC MOSFET to ensure that the SiC MOSFET can work at a faster turn-on speed with a lower turn-on loss. In this paper, the basic principle of the proposed SRD-type drive circuit is analyzed, and a double pulse platform is established. For the purpose of proof-testing the performance of the presented SRD-type drive circuit, comparisons and experimental verifications between the traditional gate driver and the proposed SRD-type drive circuit were conducted. Our experimental results finally demonstrate the feasibility and effectiveness of the proposed SRD-type drive circuit.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Actual Reasons Involving Turn-Off Losses Improvement With Increasing Load and Gate Resistance in MOSFETs Enhanced With Kelvin Source;IEEE Transactions on Industrial Electronics;2024-01

2. A Novel Active Gate Drive for Switching Loss Reduction of IGBT;2023 IEEE PELS Students and Young Professionals Symposium (SYPS);2023-08-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3