Abstract
The need for deploying fast-charging stations for electric vehicles (EVs) is becoming essential in recent years. This need is justified by the increasing charging demand and supported by new charging technologies making EV chargers more efficient. In this paper, we provide a survey on EV fast-charging models and introduce a data-driven approach with an optimization model for deploying EV fast-chargers for both electric vehicles and heavy trucks traveling through a network of suburban highways. This deployment aims at satisfying EV charging demands while respecting the limits imposed by the electric grid. We also consider the availability of local photovoltaic (PV) farm and integrate its produced power to the proposed charging network. Finally, through a case study on Paris-Saclay area, we provide locations for EV charging stations and analyze the benefits of integrating PV power at different prices, production costs and charging capacities. The obtained results also suggest potential enhancements to the charging network in order to accommodate the increasing charging demand for EVs in the future.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献