Effect of Pole Shoe Design on Inclination Angle of Different Magnetic Fields in Permanent Magnet Machines

Author:

Sjölund JonathanORCID,Eriksson SandraORCID

Abstract

Electromagnetic modelling of electrical machines through finite element analysis is an important design tool for detailed studies of high resolution. Through the usage of finite element analysis, one can study the electromagnetic fields for information that is often difficult to acquire in an experimental test bench. The requirement for accurate result is that the magnetic circuit is modelled in a correct way, which may be more difficult to maintain for rare earth free permanent magnets with an operating range that is more likely to be close to non-linear regions for the relation between magnetic flux density and magnetic field strength. In this paper, the inclination angles of the magnetic flux density, magnetic field strength and magnetization are studied and means to reduce the inclination angles are investigated. Both rotating and linear machines are investigated in this paper, with different current densities induced in the stator windings. By proper design of the pole shoes, one can reduce the inclination angles of the fields in the permanent magnet. By controlling the inclination angles, one can both enhance the performance of the magnetic circuit and increase the accuracy of simpler models for permanent magnet modelling.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Model for Angular Dependency of the Intrinsic Coercivity of Ferrite Permanent Magnets;2023 IEEE International Magnetic Conference (INTERMAG);2023-05

2. Comparison of Simulation Methods for Angular Dependency When Modeling Demagnetization;2023 IEEE International Magnetic Conference (INTERMAG);2023-05

3. Model for Angular Dependency of the Intrinsic Coercivity Force of Ferrite Permanent Magnets;2023 IEEE International Magnetic Conference - Short Papers (INTERMAG Short Papers);2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3