Molecular and Biochemical Differences in Leaf Explants and the Implication for Regeneration Ability in Rorippa aquatica (Brassicaceae)

Author:

Amano Rumi,Momoi Risa,Omata Emi,Nakahara Taiga,Kaminoyama Kaori,Kojima Mikiko,Takebayashi Yumiko,Ikematsu Shuka,Okegawa YukiORCID,Sakamoto TomoakiORCID,Kasahara Hiroyuki,Sakakibara HitoshiORCID,Motohashi KenORCID,Kimura SeisukeORCID

Abstract

Plants have a high regeneration capacity and some plant species can regenerate clone plants, called plantlets, from detached vegetative organs. We previously outlined the molecular mechanisms underlying plantlet regeneration from Rorippa aquatica (Brassicaceae) leaf explants. However, the fundamental difference between the plant species that can and cannot regenerate plantlets from vegetative organs remains unclear. Here, we hypothesized that the viability of leaf explants is a key factor affecting the regeneration capacity of R. aquatica. To test this hypothesis, the viability of R. aquatica and Arabidopsis thaliana leaf explants were compared, with respect to the maintenance of photosynthetic activity, senescence, and immune response. Time-course analyses of photosynthetic activity revealed that R. aquatica leaf explants can survive longer than those of A. thaliana. Endogenous abscisic acid (ABA) and jasmonic acid (JA) were found at low levels in leaf explant of R. aquatica. Time-course transcriptome analysis of R. aquatica and A. thaliana leaf explants suggested that senescence was suppressed at the transcriptional level in R. aquatica. Application of exogenous ABA reduced the efficiency of plantlet regeneration. Overall, our results propose that in nature, plant species that can regenerate in nature can survive for a long time.

Funder

Japan Society for the Promotion of Science

Ministry of Education, Culture, Sports, Science and Technology

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3