Abstract
Mesophyll conductance (gm) limits CO2 diffusion from sub-stomatal internal cavities to the sites of RuBP carboxylation. However, the response of gm to light intensity remains controversial. Furthermore, little is known about the light response of relative mesophyll conductance limitation (lm) and its effect on photosynthesis. In this study, we measured chlorophyll fluorescence and gas exchange in nine evergreen sclerophyllous Rhododendron species. gm was maintained stable across light intensities from 300 to 1500 μmol photons m−2 s−1 in all these species, indicating that gm did not respond to the change in illumination in them. With an increase in light intensity, lm gradually increased, making gm the major limiting factor for area-based photosynthesis (AN) under saturating light. A strong negative relationship between lm and AN was found at 300 μmol photons m−2 s−1 but disappeared at 1500 μmol photons m−2 s−1, suggesting an important role for lm in determining AN at sub-saturating light. Furthermore, the light-dependent increase in lm led to a decrease in chloroplast CO2 concentration (Cc), inducing the gradual increase of photorespiration. A higher lm under saturating light made AN more limited by RuBP carboxylation. These results indicate that the light response of lm plays significant roles in determining Cc, photorespiration, and the rate-limiting step of AN.
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献