Impact of Coating of Urea with Bacillus-Augmented Zinc Oxide on Wheat Grown under Salinity Stress

Author:

Ain Noor Ul,Naveed MuhammadORCID,Hussain Azhar,Mumtaz Muhammad Zahid,Rafique Munazza,Bashir Muhammad AsaadORCID,Alamri Saud,Siddiqui Manzer H.ORCID

Abstract

Zinc (Zn) availability is limited in salt-affected soils due to high soil pH and calcium concentrations causing Zn fixation. The application of synthetic Zn fertilizer is usually discouraged due to the high cost and low Zn use efficiency. However, salt-tolerant Zn-solubilizing bacteria (ZSB) are capable of solubilizing fixed fractions of Zn and improving fertilizer use efficiency. In the current study, a product was formulated by coating urea with bioaugmented zinc oxide (ZnO) to improve wheat productivity under a saline environment. The promising ZSB strain Bacillus sp. AZ6 was used for bioaugmentation on ZnO powder and termed as Bacillus sp. AZ6-augmented ZnO (BAZ). The experiment was conducted in pots by applying urea granules after coating with BAZ, to evaluate its effects on wheat physiology, antioxidant activity, and productivity under saline (100 mM NaCl) and non-saline (0 mM NaCl) conditions. The results revealed that the application of BAZ-coated urea alleviated salt stress through improving the seed germination, plant height, root length, photosynthetic rate, transpiration rate, stomatal conductance, soil plant analysis development (SPAD) value, number of tillers and grains, spike length, spike weight, 1000-grain weight, antioxidant activity (APX, GPX, GST, GR, CAT, and SOD), and NPK contents in the straw and grains of the wheat plants. Moreover, it also enhanced the Zn contents in the shoots and grains of wheat by up to 29.1 and 16.5%, respectively, over absolute control, under saline conditions. The relationships and variation among all the studied morpho-physio and biochemical attributes of wheat were also studied by principal component (PC) and correlation analysis. Hence, the application of such potential products may enhance nutrient availability and Zn uptake in wheat under salt stress. Therefore, the current study suggests the application of BAZ-coated urea for enhancing wheat’s physiology, antioxidant system, nutrient efficiency, and productivity effectively and economically.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3