Ecosystem Services, Physiology, and Biofuels Recalcitrance of Poplars Grown for Landfill Phytoremediation

Author:

Jr. Ronald S. ZalesnyORCID,Zhu J. Y.,Headlee William L.,Gleisner Roland,Pilipović AndrejORCID,Acker Joris Van,Bauer Edmund O.,Birr Bruce A.,Wiese Adam H.

Abstract

Long-term poplar phytoremediation data are lacking, especially for ecosystem services throughout rotations. We tested for rotation-age differences in biomass productivity and carbon storage of clones Populus deltoides Bartr. ex Marsh × P. nigra L. ‘DN34′ and P. nigra × P. maximowiczii A. Henry ‘NM6′ grown for landfill phytoremediation in Rhinelander, WI, USA (45.6° N, 89.4° W). We evaluated tree height and diameter, carbon isotope discrimination (Δ), and phytoaccumulation and phytoextraction of carbon, nitrogen, and inorganic pollutants in leaves, boles, and branches. We measured specific gravity and fiber composition, and determined biofuels recalcitrance of the Rhinelander landfill trees versus these genotypes that were grown for biomass production on an agricultural site in Escanaba, MI, USA (45.8° N, 87.2° W). ‘NM6′ exhibited 3.4 times greater biomass productivity and carbon storage than ‘DN34′, yet both of the clones had similar Δ, which differed for tree age rather than genotype. Phytoaccumulation and phytoextraction were clone- and tissue-specific. ‘DN34′ generally had higher pollutant concentrations. Across contaminants, stand-level mean annual uptake was 28 to 657% greater for ‘NM6′, which indicated its phytoremediation superiority. Site-related factors (not genotypic effects) governed bioconversion potential. Rhinelander phytoremediation trees exhibited 15% greater lignin than Escanaba biomass trees, contributing to 46% lower glucose yield for Rhinelander trees.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3