Selection of Reference Genes for qRT-PCR Analysis in Medicinal Plant Glycyrrhiza under Abiotic Stresses and Hormonal Treatments

Author:

Li Yuping,Liang Xiaoju,Zhou XuguoORCID,Wu Zhigeng,Yuan Ling,Wang Ying,Li Yongqing

Abstract

Best known as licorice, Glycyrrhiza Linn., a genus of herbaceous perennial legume, has been used as a traditional herbal medicine in Asia and a flavoring agent for tobacco and food industry in Europe and America. Abiotic stresses and hormonal treatments can significantly impact the development and metabolism of secondary metabolites in Glycyrrhiza. To better understand the biosynthesis of the trace-amount bioactive compounds, we first screened for the suitable reference genes for quantitative real-time reverse transcription PCR (qRT-PCR) analysis in Glycyrrhiza. The expression profiles of 14 candidate reference genes, including Actin1 (ACT), Clathrin complex AP1 (CAC), Cyclophilin (CYP), Heat-shock protein 40 (DNAJ), Dehydration responsive element binding gene (DREB), Translation elongation factor1 (EF1), Ras related protein (RAN), Translation initiation factor (TIF1), β-Tubulin (TUB), Ubiquitin-conjugating enzyme E2 (UBC2), ATP binding-box transpoter 2 (ABCC2), COP9 signal compex subunit 3 (COPS3), Citrate synthase (CS), and R3H domain protein 2 (R3HDM2) from two congeneric species, Glycyrrhiza uralensis F. and Glycyrrhiza inflata B., were examined under abiotic stresses (osmotic and salinity) and hormonal treatments (Abscisic acid (ABA) and methyl jasmonic acid (MeJA)) using a panel of software, including geNorm, NormFinder, BestKeeper, and Delta CT. The overall stability, however, was provided by RefFinder, a comprehensive ranking system integrating inputs from all four algorithms. In G. uralensis, the most stable reference genes under osmotic stress, salt stress, ABA treatment, and MeJA treatment were TIF1, DNAJ, CS, and ABCC2 for leaves and DNAJ, DREB, CAC, and CAC for roots, respectively. In comparison, the top ranked genes were TUB, CAC, UBC2, and RAN for leaves and TIF1, ABCC2, CAC, and UBC2 for roots, respectively, under stress and hormonal treatments in G. inflata. ACT and TIF1, on the other hand, were the least stable genes under the most experimental conditions in the two congeneric species. Finally, our survey of the reference genes in legume shows that EF, ACT, UBC2, and TUB were the top choices for the abiotic stresses while EF, UBC2, CAC, and ABCC2 were recommended for the hormonal treatments in Leguminosae. Our combined results provide reliable normalizers for accurate gene quantifications in Glycyrrhiza species, which will allow us to exploit its medicinal potential in general and antiviral activities in particular.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3