Zinc (Zn): The Last Nutrient in the Alphabet and Shedding Light on Zn Efficiency for the Future of Crop Production under Suboptimal Zn

Author:

Hacisalihoglu GokhanORCID

Abstract

At a global scale, about three billion people have inadequate zinc (Zn) and iron (Fe) nutrition and 500,000 children lose their lives due to this. In recent years, the interest in adopting healthy diets drew increased attention to mineral nutrients, including Zn. Zn is an essential micronutrient for plant growth and development that is involved in several processes, like acting as a cofactor for hundreds of enzymes, chlorophyll biosynthesis, gene expression, signal transduction, and plant defense systems. Many agricultural soils are unable to supply the Zn needs of crop plants, making Zn deficiency a widespread nutritional disorder, particularly in calcareous (pH > 7) soils worldwide. Plant Zn efficiency involves Zn uptake, transport, and utilization; plants with high Zn efficiency display high yield and significant growth under low Zn supply and offer a promising and sustainable solution for the production of many crops, such as rice, beans, wheat, soybeans, and maize. The goal of this review is to report the current knowledge on key Zn efficiency traits including root system uptake, Zn transporters, and shoot Zn utilization. These mechanisms will be valuable for increasing the Zn efficiency of crops and food Zn contents to meet global needs for food production and nutrition in the 21st century. Furthermore, future research will address the target genes underlying Zn efficiency and the optimization of Zn efficiency phenotyping for the development of Zn-efficient crop varieties for more sustainable crop production under suboptimal Zn regimes, as well food security of the future.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3