LHCSR3-Type NPQ Prevents Photoinhibition and Slowed Growth under Fluctuating Light in Chlamydomonas reinhardtii

Author:

Roach ThomasORCID

Abstract

Natural light intensities can rise several orders of magnitude over subsecond time spans, posing a major challenge for photosynthesis. Fluctuating light tolerance in the green alga Chlamydomonas reinhardtii requires alternative electron pathways, but the role of nonphotochemical quenching (NPQ) is not known. Here, fluctuating light (10 min actinic light followed by 10 min darkness) led to significant increase in NPQ/qE-related proteins, LHCSR1 and LHCSR3, relative to constant light of the same subsaturating or saturating intensity. Elevated levels of LHCSR1/3 increased the ability of cells to safely dissipate excess light energy to heat (i.e., qE-type NPQ) during dark to light transition, as measured with chlorophyll fluorescence. The low qE phenotype of the npq4 mutant, which is unable to produce LHCSR3, was abolished under fluctuating light, showing that LHCSR1 alone enables very high levels of qE. Photosystem (PS) levels were also affected by light treatments; constant light led to lower PsbA levels and Fv/Fm values, while fluctuating light led to lower PsaA and maximum P700+ levels, indicating that constant and fluctuating light induced PSII and PSI photoinhibition, respectively. Under fluctuating light, npq4 suffered more PSI photoinhibition and significantly slower growth rates than parental wild type, whereas npq1 and npq2 mutants affected in xanthophyll carotenoid compositions had identical growth under fluctuating and constant light. Overall, LHCSR3 rather than total qE capacity or zeaxanthin is shown to be important in C. reinhardtii in tolerating fluctuating light, potentially via preventing PSI photoinhibition.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3