Impact of Bulk ZnO, ZnO Nanoparticles and Dissolved Zn on Early Growth Stages of Barley—A Pot Experiment

Author:

Nemček LuciaORCID,Šebesta MartinORCID,Urík Martin,Bujdoš Marek,Dobročka Edmund,Vávra Ivo

Abstract

Zinc is among the most in-demand metals in the world which also means that a considerable amount of this element is released to the environment each year as a result of human activities. A pot experiment was conducted to study the impact of low- and high-dose zinc amendments on plant growth and biomass yield, with Calcic Chernozem as a growing medium and barley (Hordeum vulgare L.) as a model plant. The distribution of zinc in various plant parts was also investigated. Zn (II) was added in powder as bulk ZnO and in solution as ZnO nanoparticles and ZnSO4 in two dosages (3 and 30 mmol kg−1 soil) prior to planting. The plants were harvested after 10 days of growth. The three sets of data were taken under identical experimental conditions. The application of zinc in aqueous solution and in particulate form (having particle sizes in the range of <100 nm to >500 nm) at concentration of 3 and 30 mmol Zn kg−1 to the soil resulted in decreased growth (root length, shoot length) and biomass yield; the only exception was the addition of 30 mmol Zn kg−1 in the form of bulk ZnO, which had a positive effect on the root growth. The dry weight reduction (sprout biomass) was lowest in plants grown in soil treated with dissolved zinc. There were no statistically significant changes in the content of chlorophyll a, chlorophyll b, and total chlorophyll, although flame atomic absorption spectrometry (FAAS) analysis indicated that plants bioaccumulated the zinc applied. This implies that the transport of zinc into the above-ground plant parts is controlled by the presence of effective mechanical and physiological barriers in roots. Crop performance under zinc stress in relation to biomass production and the growth of roots and shoots is also partly a reflection of the effects of soil properties. Our findings emphasize the importance of considering plant-soil interactions in research of potential toxicity and bioavailability of zinc in the environment.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference42 articles.

1. Exposure Assessment for Atmospheric Ultrafine Particles (UFPs) and Implications in Epidemiologic Research

2. Nanostructured ZnO thin films: Properties and applications;Dimova-Malinovska,2011

3. Zinc oxide market by process (French process, Wet process, American process), Grade (Standard, Treated, USP, FCC), Application (Rubber, Ceramics, Chemicals, Agriculture, Cosmetics & Personal care, Pharmaceuticals), Region-Global forecast to 2024. In Market Research Report CH 3664, 2019 November; MarketsandMarkets INC https://www.marketsandmarkets.com/

4. Influence of zinc oxide during different stages of sulfur vulcanization. Elucidated by model compound studies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3