Exogenous Nitric Oxide Delays Plant Regeneration from Protoplast and Protonema Development in Physcomitrella patens

Author:

Cervantes-Pérez DanielaORCID,Ortega-García Angélica,Medina-Andrés Rigoberto,Batista-García Ramón AlbertoORCID,Lira-Ruan VerónicaORCID

Abstract

Nitric oxide (NO) has been recognized as a major player in the regulation of plant physiology and development. NO regulates cell cycle progression and cell elongation in flowering plants and green algae, although the information about NO function in non-vascular plants is scarce. Here, we analyze the effect of exogenous NO on Physcomitrella patens protonema growth. We find that increasing concentrations of the NO donor sodium nitroprusside (SNP) inhibit protonema relative growth rate and cell length. To further comprehend the effect of NO on moss development, we analyze the effect of SNP 5 and 10 µM on protoplast regeneration and, furthermore, protonema formation compared with untreated plants (control). Isolated protoplasts were left to regenerate for 24 h before starting the SNP treatments that lasted five days. The results show that SNP restrains the protoplast regeneration process and the formation of new protonema cells. When SNP treatments started five days after protoplast isolation, a decrease in cell number per protonema filament was observed, indicating an inhibition of cell cycle progression. Our results show that in non-vascular plants, NO negatively regulates plant regeneration, cell cycle and cell elongation.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fine-tuned nitric oxide and hormone interface in plant root development and regeneration;Journal of Experimental Botany;2022-12-22

2. Mosses: Accessible Systems for Plant Development Studies;Model Organisms in Plant Genetics [Working Title];2021-10-29

3. Model systems for regeneration:Arabidopsis;Development;2021-03-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3