Desert Soil Microbes as a Mineral Nutrient Acquisition Tool for Chickpea (Cicer arietinum L.) Productivity at Different Moisture Regimes

Author:

Mahmood Aulakh Azhar,Qadir Ghulam,Hassan Fayyaz Ul,Hayat Rifat,Sultan Tariq,Billah MotsimORCID,Hussain Manzoor,Khan NaeemORCID

Abstract

Drought is a major constraint in drylands for crop production. Plant associated microbes can help plants in acquisition of soil nutrients to enhance productivity in stressful conditions. The current study was designed to illuminate the effectiveness of desert rhizobacterial strains on growth and net-return of chickpeas grown in pots by using sandy loam soil of Thal Pakistan desert. A total of 125 rhizobacterial strains were isolated, out of which 72 strains were inoculated with chickpeas in the growth chamber for 75 days to screen most efficient isolates. Amongst all, six bacterial strains (two rhizobia and four plant growth promoting rhizobacterial strains) significantly enhanced nodulation and shoot-root length as compared to other treatments. These promising strains were morphologically and biochemically characterized and identified through 16sRNA sequencing. Then, eight consortia of the identified isolates were formulated to evaluate the growth and development of chickpea at three moisture levels (55%, 75% and 95% of field capacity) in a glass house experiment. The trend for best performing consortia in terms of growth and development of chickpea remained T2 at moisture level 1 > T7 at moisture level 2 > T4 at moisture level 3. The present study indicates the vital role of co-inoculated bacterial strains in growth enhancement of chickpea under low moisture availability. It is concluded from the results that the consortium T2 (Mesorhizobium ciceri RZ-11 + Bacillus subtilis RP-01 + Bacillus mojavensis RS-14) can perform best in drought conditions (55% field capacity) and T4 (Mesorhizobium ciceri RZ-11 + Enterobacter Cloacae RP-08 + Providencia vermicola RS-15) can be adopted in irrigated areas (95% field capacity) for maximum productivity of chickpea.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3