Abstract
Drought is a major constraint in drylands for crop production. Plant associated microbes can help plants in acquisition of soil nutrients to enhance productivity in stressful conditions. The current study was designed to illuminate the effectiveness of desert rhizobacterial strains on growth and net-return of chickpeas grown in pots by using sandy loam soil of Thal Pakistan desert. A total of 125 rhizobacterial strains were isolated, out of which 72 strains were inoculated with chickpeas in the growth chamber for 75 days to screen most efficient isolates. Amongst all, six bacterial strains (two rhizobia and four plant growth promoting rhizobacterial strains) significantly enhanced nodulation and shoot-root length as compared to other treatments. These promising strains were morphologically and biochemically characterized and identified through 16sRNA sequencing. Then, eight consortia of the identified isolates were formulated to evaluate the growth and development of chickpea at three moisture levels (55%, 75% and 95% of field capacity) in a glass house experiment. The trend for best performing consortia in terms of growth and development of chickpea remained T2 at moisture level 1 > T7 at moisture level 2 > T4 at moisture level 3. The present study indicates the vital role of co-inoculated bacterial strains in growth enhancement of chickpea under low moisture availability. It is concluded from the results that the consortium T2 (Mesorhizobium ciceri RZ-11 + Bacillus subtilis RP-01 + Bacillus mojavensis RS-14) can perform best in drought conditions (55% field capacity) and T4 (Mesorhizobium ciceri RZ-11 + Enterobacter Cloacae RP-08 + Providencia vermicola RS-15) can be adopted in irrigated areas (95% field capacity) for maximum productivity of chickpea.
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献