Abstract
Groundwater is extremely important in a water-scarce country such as Saudi Arabia, where permanent surface water resources are absent. Sustainable and future developments plans are essentially relying on the clear understanding of water resources. To evaluate the water resources in arid countries, the groundwater should be quantified through either traditional or scientifically advanced techniques. Aquifer characteristics, particularly the hydraulic conductivity and transmissivity, are essential for the evaluation the aquifer properties as well as the management and development of groundwater modelling for specific aquifers. The present study aims to evaluate the sub-basaltic alluvial aquifer in the northern part of Harrat Rahat, south of Al-Madinah city, and then estimates the principal aquifer’s hydraulic parameters based on the interpreted 1D resistivity-depth models along the study area. For that, 49 Vertical Electrical Soundings (VES’s) utilizing a Schlumberger electrode array were performed along the southern part of Al-Madinah city. The resistivity of the water-bearing formation, thickness, porosity, hydraulic conductivity, and transmissivity parameters were calculated along the measured longitudinal profile from the interpreted VES data. The estimated porosity, hydraulic conductivity, and transmissivity were achieved along the whole profile with average values of 0.2, 3.5 m/day, and 369.6 m2/day, respectively. The resulting transmissivity values from the VES models were compared with those of previous pumping test measurements carried out in the area and a reasonable correlation between the two data sets was observed. These results indicate that surface geoelectrical resistivity techniques may provide an alternative, rapid, and cost-effective method of estimating the aquifer hydraulic parameters where pumping data is rare or unavailable.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献