Development and Utilization of Renewable Energy Based on Carbon Emission Reduction—Evaluation of Multiple MCDM Methods

Author:

Li Tao,Li Ang,Song Yimiao

Abstract

With the proposed target of carbon peak and carbon neutralization, the development and utilization of renewable energy with the goal of carbon emission reduction is becoming increasingly important in China. We used the analytic hierarchy process (ANP) and a variety of MCDM methods to quantitatively evaluate renewable energy indicators. This study measured the sequence and differences of the development and utilization of renewable energy in different regions from the point of view of carbon emission reduction, which provides a new analytical perspective for the utilization and distribution of renewable energy in China and a solution based on renewable energy for achieving the goal of carbon emission reduction as soon as possible. The reliability of the evaluation system was further enhanced by confirmation through a variety of methods. The results show that the environment and carbon dimensions are the primary criteria to evaluate the priority of renewable energy under carbon emission reduction. In the overall choice of renewable energy, photovoltaic energy is the best solution. After dividing regions according to carbon emission intensity and resource endowment, areas with serious carbon emissions are suitable for the development of hydropower; areas with sub-serious carbon emissions should give priority to the development of photovoltaic or wind power; high-carbon intensity area I should vigorously develop wind power; high-carbon intensity area II should focus on developing photovoltaic power; second high-carbon intensity areas I and II are suitable for the development of wind power and photovoltaic power; and second high-carbon intensity areas III and IV are the most suitable for hydropower.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3