A Survey of Datasets, Preprocessing, Modeling Mechanisms, and Simulation Tools Based on AI for Material Analysis and Discovery

Author:

Imran ORCID,Qayyum Faiza,Kim Do-Hyeun,Bong Seon-Jong,Chi Su-Young,Choi Yo-Han

Abstract

Research has become increasingly more interdisciplinary over the past few years. Artificial intelligence and its sub-fields have proven valuable for interdisciplinary research applications, especially physical sciences. Recently, machine learning-based mechanisms have been adapted for material science applications, meeting traditional experiments’ challenges in a time and cost-efficient manner. The scientific community focuses on harnessing varying mechanisms to process big data sets extracted from material databases to derive hidden knowledge that can successfully be employed in technical frameworks of material screening, selection, and recommendation. However, a plethora of underlying aspects of the existing material discovery methods needs to be critically assessed to have a precise and collective analysis that can serve as a baseline for various forthcoming material discovery problems. This study presents a comprehensive survey of state-of-the-art benchmark data sets, detailed pre-processing and analysis, appropriate learning model mechanisms, and simulation techniques for material discovery. We believe that such an in-depth analysis of the mentioned aspects provides promising directions to the young interdisciplinary researchers from computing and material science fields. This study will help devise useful modeling in the materials discovery to positively contribute to the material industry, reducing the manual effort involved in the traditional material discovery. Moreover, we also present a detailed analysis of experimental and computation-based artificial intelligence mechanisms suggested by the existing literature.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3