Neural Network-Based Multi-Objective Optimization of Adjustable Drawbead Movement for Deep Drawing of Tailor-Welded Blanks

Author:

Kahhal ParvizORCID,Jung JaebongORCID,Hur Yong Chan,Moon Young HoonORCID,Kim Ji HoonORCID

Abstract

To improve the formability in the deep drawing of tailor-welded blanks, an adjustable drawbead was introduced. Drawbead movement was obtained using the multi-objective optimization of the conflicting objective functions of the fracture and centerline deviation simultaneously. Finite element simulations of the deep drawing processes were conducted to generate observations for optimization. The response surface method and artificial neural network were used to determine the relationship between variables and objective functions; the procedure was applied to a circular cup drawing of the tailor-welded dual-phase steel blank. The results showed that the artificial neural network had better prediction capability and accuracy than the response surface method. Additionally, the non-dominated sorting-based genetic algorithm (NSGA-II) could effectively determine the optima. The adjustable drawbead with the optimized movement was confirmed as an efficient and effective solution for improving the formability of the deep drawing of tailor-welded blanks.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3