Adsorption of Pollutants from Colored Wastewaters after Natural Wool Dyeing

Author:

Ojstršek AlenkaORCID,Vouk Primož,Fakin Darinka

Abstract

The presented study assesses the efficiency of selected adsorbents, zeolite 4A in two particle sizes and pelletized activated carbon (AC), for the potential removal of color, chemical oxygen demand (COD), total organic carbon (TOC) and metals from wastewaters after natural wool dyeing. Firstly, the natural coloring compounds were extracted from dried common walnut (Juglans regia) leaves and used further for exhaustion dyeing of wool fibers, together with three different metallic salts in two concentrations (meta-mordanting). Effluents with higher mordant concentration were additionally treated according to a shake-flask adsorption experiment. The obtained results revealed efficient removal of exceeded metallic ions by zeolite (up to 94.7%), on account of their superior ion exchange capability as compared to AC. The zeolites also reduced turbidity and electrical conductivity significantly. On the other hand, AC was more efficient for the reduction in organic pollution, COD up to 96% and TOC up to 95%, due to its higher specific surface area and total pore volume, and, thus, higher potential for adsorption of different compounds in comparison to 4A. All three proposed adsorbents lowered wastewaters’ coloration remarkably, up to 78% (AC) and up to 71% (4A), depending on the type of effluent/mordant and inspected wavelength; although, the spectral absorbance coefficient (SAC) values remained highly above the limit values for discharge of wastewaters into watercourses.

Funder

Slovenian Research Agency

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3