Leakage Detection in Water Distribution Networks Based on Multi-Feature Extraction from High-Frequency Pressure Data

Author:

Wu Xingqi1,Peng Sen1ORCID,Zheng Guolei2,Fang Xu1,Tian Yimei1

Affiliation:

1. School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China

2. School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

Abstract

Leakage detection is an important task to ensure the operational safety of water distribution networks. Leakage characteristic extraction based on high-frequency data has been widely used for leakage detection in experimental networks. However, the accuracy of single-feature-based methods is limited by the interference of background pressure fluctuations in networks. In addition, the setting of leakage diagnosis thresholds has been insufficiently studied, but influences leakage detection performance greatly. Hence, a new method of leakage detection is proposed based on multi-feature extraction. The multi-features of leakage are composed of instantaneous characteristics (ICs) and trend characteristics (TCs), which constitute comprehensive leakage information. The levels of the instantaneous and trend pressure drops in background pressure fluctuations in network environments are quantified for the setting of leakage diagnosis thresholds. In addition, ICs and TCs are used for leakage degree prediction. The proposed method was applied to an experimental network. Compared with the single-feature-based method and the cumulative sum (CUSUM) method, the proposed method achieved increases of 6.01% and 13.66% in F-Scores, respectively, and showed better adaptability to background pressure fluctuations in complex network environments.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3