Thermal Hazard Analysis of Styrene Polymerization in Microreactor of Varying Diameter

Author:

Wang Junjie,Ni LeiORCID,Cui Jiawei,Jiang Juncheng,Zhou Kuibin

Abstract

Polymerization is a typical exothermic reaction in the fine chemical industry, which is easy to cause thermal runaway. In order to lower the thermal runaway risk of polymerization, a microreactor was adopted in this study to carry out styrene thermal polymerization. The hydrodynamic model and the fluid–solid coupling model of thermal polymerization of styrene were combined by using the computation fluid dynamics (CFD) method to build a three-dimensional steady-state model of the batch and the microreactor and compare. The results indicated that the maximum temperature of the polymerization in the microreactor was only 150.23 °C, while in the batch reactor, it was up to 371.1 °C. Therefore, the reaction temperature in the microreactor could be controlled more effectively compared with that in the batch reactor. During the reaction process, jacket cooling may fail, which would lead to an adiabatic situation. According to the divergence criterion (DIV), the thermal runaway of the polymerization occurred in microreactors with different tube diameters under an adiabatic situation. Further, the diameter of the microreactor had a considerable effect on the distribution of the inside temperature field under normal jacket cooling. The maximum temperature difference in the microreactor with a diameter of 6 mm was controlled at 25.33 °C. However, the effects of the inlet velocity (0.001, 0.0015, 0.002, 0.0025, 0.003 m/s), jacket temperature (150, 170, 180, 190, 200 °C) and residence time (400, 500, 600, 750 s) were relatively small. In addition, the jacket temperature had significant effects on viscosity, while other conditions had little effect. The DIV criterion indicated that the styrene thermal polymerization reactions could be safely performed in the microreactor when the jacket was cooled normally.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3