Abstract
In predicting the response of track from a moving train only one track is generally considered. However, the effect of ground vibrations from one track and its effect on the nearby tracks has not been studied completely. Therefore, in the present paper, the effect of track irregularities and speed on the prediction of two-way tracks response is investigated. For this purpose, a three-dimensional dynamic finite element (FE) model capable of simulating interactions between the train and track by using a nonlinear hertz contact method was developed. The model uses tensionless stiffness between the wheel and rail to couple them. The model components including the sleeper, ballast, and soil domain are represented by solid brick elements. The rails are modeled as 3D Euler–Bernoulli beam elements. An iterative numerical algorithm was established for the integrations of the train and track interface. A comparative analysis was performed at various speeds and rail surface irregularity wavelengths. With the increase in speed, the results showed a significant increase in the adjacent tracks response and can induce much larger track vibrations at high frequency.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献