Abstract
Frequency response signals have been used for the non-destructive evaluation of many different structures and for the integrity evaluation of porcelain insulators. However, it is difficult to accurately estimate the integrity of porcelain insulators under various environmental conditions only by using general frequency response signals. Therefore, this study used a method that extracted several features that can be derived from the frequency response signal and reduced their dimensions to select features suitable for the evaluation of the soundness of porcelain insulators. The latest machine learning techniques were used to identify correlations and not for basic feature analyses. Two machine learning models were developed using the support vector machine and ensemble methods in MATLAB. Both models showed high reliability in distinguishing between normal and defective porcelain insulators, and they could visualize the distribution area of the data by extracting quantitative values and applying machine learning, rather than simply verifying the frequency response signal.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献