Preparation and Characterization for Antibacterial Activities of 3D Printing Polyetheretherketone Disks Coated with Various Ratios of Ampicillin and Vancomycin Salts

Author:

Lau Ngi-Chiong,Tsai Min-Hua,Chen Dave W.,Chen Chien-Hao,Cheng Kong-Wei

Abstract

In this study, polyetheretherketone (PEEK) materials coated with various ratios of two kinds of antibiotic agents (ampicillin and/or vancomycin salts) were prepared. A modified 3D printer based on fused deposition modeling was employed to prepare PEEK disks. Coating ampicillin and/or vancomycin salts onto the PEEK disks was carried out using the biodegradable poly (lactic-co-glycolic acid) (PLGA) polymer as a binder and a control unit for the drug release in the buffer solution. The effects of various rations of ampicillin and/or vancomycin salts in the PLGA polymer on the PEEK substrates, the release profiles of various drugs, and antibacterial activities of the samples were investigated. Temperature of the heated nozzle in a commerical 3D printer was set at 340 °C. After systemic investigations of the qualities of PEEK disks, a diameter of the heated nozzle of 0.6 mm in the 3D printer was employed for the preparation of PEEK disks. Results of drug release profiles from samples into buffer solution show that the antibacterial activities of samples can continue up to 28 days. In the inhibition zone test of samples, the release amounts of antibiotic agents from the PEEK samples can inhibit S. aureus with activity of over 40% in 30 days tests and most of them can have inhibition activities of higher than 60% during the test. These results showed that a simple and low-cost 3D printing method for the preparation of PEEK/antibiotic agents/PLGA samples can have further applications in biomedical-related technology.

Funder

Chang Gung Memorial Hospital

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference29 articles.

1. A new chapter in pharmaceutical manufacturing: 3D-printed drug products

2. 3D Printing and Additive Manufacturing State of the Industrial Annual Worldwide Progress Report;Wholers,2018

3. 3D printing in pharmaceutics: A new tool for designing customized drug delivery systems

4. Long-term antibacterial performances of biodegradable polylactic acid materials with direct absorption of antibiotic agents

5. Antibacterial applications on staphylococcus aureus using abtibiotic agent/zinc oxide nonorod arrays/polyethylethylketone composite samples;Chen;Nanomaterials,2019

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3