Abstract
Compressed sensing is well known for its superior compression performance, in existing schemes, in lossy compression. Conventional research aims to reach a larger compression ratio at the encoder, with acceptable quality reconstructed images at the decoder. This implies looking for compression performance with error-free transmission between the encoder and the decoder. Besides looking at compression performance, we applied block compressed sensing to digital images for robust transmission. For transmission over lossy channels, error propagation or data loss can be expected, and protection mechanisms for compressed sensing signals are required for guaranteed quality of the reconstructed images. We propose transmitting compressed sensing signals over multiple independent channels for robust transmission. By introducing correlations with multiple-description coding, which is an effective means for error resilient coding, errors induced in the lossy channels can effectively be alleviated. Simulation results presented the applicability and superiority of performance, depicting the effectiveness of protection of compressed sensing signals.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献