Noise-Robust Voice Conversion Using High-Quefrency Boosting via Sub-Band Cepstrum Conversion and Fusion

Author:

Miao XiaokongORCID,Sun MengORCID,Zhang Xiongwei,Wang Yimin

Abstract

This paper presents a noise-robust voice conversion method with high-quefrency boosting via sub-band cepstrum conversion and fusion based on the bidirectional long short-term memory (BLSTM) neural networks that can convert parameters of vocal tracks of a source speaker into those of a target speaker. With the implementation of state-of-the-art machine learning methods, voice conversion has achieved good performance given abundant clean training data. However, the quality and similarity of the converted voice are significantly degraded compared to that of a natural target voice due to various factors, such as limited training data and noisy input speech from the source speaker. To address the problem of noisy input speech, an architecture of voice conversion with statistical filtering and sub-band cepstrum conversion and fusion is introduced. The impact of noises on the converted voice is reduced by the accurate reconstruction of the sub-band cepstrum and the subsequent statistical filtering. By normalizing the mean and variance of the converted cepstrum to those of the target cepstrum in the training phase, a cepstrum filter was constructed to further improve the quality of the converted voice. The experimental results showed that the proposed method significantly improved the naturalness and similarity of the converted voice compared to the baselines, even with the noisy inputs of source speakers.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. English Emotional Voice Conversion Using StarGAN Model;IEEE Access;2023

2. Noisy-to-Noisy Voice Conversion Under Variations of Noisy Condition;IEEE/ACM Transactions on Audio, Speech, and Language Processing;2023

3. Arabic Emotional Voice Conversion Using English Pre-Trained StarGANv2-VC-Based Model;Applied Sciences;2022-11-28

4. Speech Enhancement-assisted Voice Conversion in Noisy Environments;2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC);2022-11-07

5. Learning Noise-independent Speech Representation for High-quality Voice Conversion for Noisy Target Speakers;Interspeech 2022;2022-09-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3