A Nested Ensemble Filtering Approach for Parameter Estimation and Uncertainty Quantification of Traffic Noise Models

Author:

Huang Kai,Fan Yurui,Dai Liming

Abstract

In this study, a nested ensemble filtering (NEF) approach is advanced for uncertainty parameter estimation and uncertainty quantification of a traffic noise model. As an extension of the ensemble Kalman filter (EnKF) and particle filter methods, the proposed NEF method improves upon the ensemble Kalman filter (EnKF) method by incorporating the sample importance resampling (SIR) procedures into the EnKF update process. The NEF method can avoid the overshooting problem (abnormal value (e.g., outside the predefined ranges, complex values) in parameter or state samples) existing in the EnKF update process. The proposed NEF method is applied to the traffic noise prediction on the Trans-Canada Highway in the City of Regina to demonstrate its applicability. The results indicate that: (a) when determining parameters in the traffic noise prediction model, the NEF method provides accurate estimation; (b) the model parameters can be recursively corrected with the NEF method whenever a new measurement becomes available; (c) the uncertainty in the traffic noise model (should be the noise itself) can be well reduced and quantified through the proposed NEF approach.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3