Spatial Prediction of Landslides Using Hybrid Integration of Artificial Intelligence Algorithms with Frequency Ratio and Index of Entropy in Nanzheng County, China

Author:

Chen WeiORCID,Fan Limin,Li Cheng,Pham Binh ThaiORCID

Abstract

The main object of this study is to introduce hybrid integration approaches that consist of state-of-the-art artificial intelligence algorithms (SysFor) and two bivariate models, namely the frequency ratio (FR) and index of entropy (IoE), to carry out landslide spatial prediction research. Hybrid integration approaches of these two bivariate models and logistic regression (LR) were used as benchmark models. Nanzheng County was considered as the study area. First, a landslide distribution map was produced using news reports, interpreting satellite images and a regional survey. A total of 202 landslides were identified and marked. According to the previous studies and local geological environment conditions, 16 landslide conditioning factors were chosen for landslide spatial prediction research: elevation, profile curvature, plan curvature, slope angle, slope aspect, stream power index (SPI), topographic wetness index (TWI), sediment transport index (STI), distance to roads, distance to rivers, distance to faults, lithology, rainfall, soil, normalized different vegetation index (NDVI), and land use. Then, the 202 landslides were randomly segmented into two parts with a ratio of 70:30. Seventy percent of the landslides (141) were used as the training dataset and the remaining landslides (61) were used as the validating dataset. Next, the evaluation models were built using the training dataset and compared by the receiver operating characteristics (ROC) curve. The results showed that all models performed well; the FR_SysFor model exhibited the best prediction ability (0.831), followed by the IoE_SysFor model (0.819), IoE_LR model (0.702), FR_LR model (0.696), IoE model (0.691), and FR model (0.681). Overall, these six models are practical tools for landslide spatial prediction research and the results can provide a reference for landslide prevention and control in the study area.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3