Author:
Yusuf Aminu,Ballikaya Sedat
Abstract
Thermoelectric generator (TEG) modules generally have a low conversion efficiency. Among the reasons for the lower conversion efficiency is thermoelectric (TE) material mismatch. Hence, it is imperative to carefully select the TE material and optimize the design before any mass-scale production of the modules. Here, with the help of Comsol-Multiphysics (5.3) software, TE materials were carefully selected and the design was optimized to achieve a higher conversion efficiency. An initial module simulation (32 couples) of unsegmented skutterudite Ba0.1Yb0.2Fe0.1Co3.9Sb12 (n-type) and Ce0.5Yb0.5Fe3.25Co0.75Sb12 (p-type) TE materials was carried out. At the temperature gradient T∆ = 500 K, a maximum simulated conversion efficiency of 9.2% and a calculated efficiency of 10% were obtained. In optimization via segmentation, the selection of TE materials, considering compatibility factor (s) and ZT, was carefully done. On the cold side, Bi2Te3 (n-type) and Sb2Te3 (p-type) TE materials were added as part of the segmentation, and at the same temperature gradient, an open circuit voltage of 6.2 V matched a load output power of 45 W, and a maximum simulated conversion efficiency of 15.7% and a calculated efficiency of 17.2% were achieved. A significant increase in the output characteristics of the module shows that the segmentation is effective. The TEG shows promising output characteristics.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献