Deep Fake Image Detection Based on Pairwise Learning

Author:

Hsu Chih-ChungORCID,Zhuang Yi-Xiu,Lee Chia-Yen

Abstract

Generative adversarial networks (GANs) can be used to generate a photo-realistic image from a low-dimension random noise. Such a synthesized (fake) image with inappropriate content can be used on social media networks, which can cause severe problems. With the aim to successfully detect fake images, an effective and efficient image forgery detector is necessary. However, conventional image forgery detectors fail to recognize fake images generated by the GAN-based generator since these images are generated and manipulated from the source image. Therefore, in this paper, we propose a deep learning-based approach for detecting the fake images by using the contrastive loss. First, several state-of-the-art GANs are employed to generate the fake–real image pairs. Next, the reduced DenseNet is developed to a two-streamed network structure to allow pairwise information as the input. Then, the proposed common fake feature network is trained using the pairwise learning to distinguish the features between the fake and real images. Finally, a classification layer is concatenated to the proposed common fake feature network to detect whether the input image is fake or real. The experimental results demonstrated that the proposed method significantly outperformed other state-of-the-art fake image detectors.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference29 articles.

1. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks

2. AI Can Now Create Fake Porn, Making Revenge Porn Even More Complicatedhttps://theconversation.com/ai-can-now-create-fake-porn-making-revenge-porn-even-more-complicated-92267

3. Learning to Detect Fake Face Images in the Wild

Cited by 109 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3