The Influence of Laser Sintering Modes on the Conductivity and Microstructure of Silver Nanoparticle Arrays Formed by Dry Aerosol Printing

Author:

Khabarov KirillORCID,Kornyushin Denis,Masnaviev Bulat,Tuzhilin Dmitry,Saprykin Dmitry,Efimov Alexey,Ivanov Victor

Abstract

The demand for the development of local laser sintering of nanoparticle arrays is explained by the expanding needs for printed electronics for functional microstructure formation, on heat-sensitive substrates in particular. This work is based on the research into the sintering of arrays of silver nanoparticles synthesized in a spark discharge and deposited on a substrate by focused aerosol flow. The sintering was done by continuous and pulsed lasers with wavelengths 527, 980 and 1054 nm. Sintered samples were studied by measuring the resistivity, cross-section profile area and microstructure features. The highest average conductivity, equal to the half of the bulk silver conductivity, was achieved when sintering by continuous radiation with a wavelength 980 nm. The results showed that when using pulsed radiation the direct heating of nanoparticles in the sample surface layer dominates with the formation of a pore-free conductive layer of around 0.5 μm thick and crystallite of 70–80 nm size. It was found that laser sintering by radiation with a wavelength 527 nm required an order of magnitude lower specific energy costs as compared to the longwave laser radiation. The high energy efficiency of laser sintering is explained by special conditions for radiation absorption at plasmon resonance.

Funder

Ministry of Education and Science of the Russian Federation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3