AI-Based Modeling and Monitoring Techniques for Future Intelligent Elastic Optical Networks

Author:

Liu Xiaomin,Lun Huazhi,Fu Mengfan,Fan Yunyun,Yi Lilin,Hu Weisheng,Zhuge Qunbi

Abstract

With the development of 5G technology, high definition video and internet of things, the capacity demand for optical networks has been increasing dramatically. To fulfill the capacity demand, low-margin optical network is attracting attentions. Therefore, planning tools with higher accuracy are needed and accurate models for quality of transmission (QoT) and impairments are the key elements to achieve this. Moreover, since the margin is low, maintaining the reliability of the optical network is also essential and optical performance monitoring (OPM) is desired. With OPM, controllers can adapt the configuration of the physical layer and detect anomalies. However, considering the heterogeneity of the modern optical network, it is difficult to build such accurate modeling and monitoring tools using traditional analytical methods. Fortunately, data-driven artificial intelligence (AI) provides a promising path. In this paper, we firstly discuss the requirements for adopting AI approaches in optical networks. Then, we review various recent progress of AI-based QoT/impairments modeling and monitoring schemes. We categorize these proposed methods by their functions and summarize advantages and challenges of adopting AI methods for these tasks. We discuss the problems remained for deploying AI-based methods to a practical system and present some possible directions for future investigation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3