A Back Propagation Neural Network Model Optimized by Mind Evolutionary Algorithm for Estimating Cd, Cr, and Pb Concentrations in Soils Using Vis-NIR Diffuse Reflectance Spectroscopy

Author:

Wang Xi,An Shi,Xu Yaqing,Hou Huping,Chen Fuyao,Yang Yongjun,Zhang ShaoliangORCID,Liu Run

Abstract

Visible and near infrared spectroscopy is an effective method for monitoring the content of heavy metals in soil. However, due to the difference between polluted soil with phytoremediation and without phytoremediation, the common estimation model cannot meet accuracy requirements. To solve this problem, combined with an ecological restoration experiment for soil contamination using the plant Neyraudia reynaudiana, this study explored the feasibility of using a hyperspectral technology to estimate the heavy metal content (Cd, Cr, and Pb) of soil under phytoremediation. A total of 108 surface soil samples (from depths of 0–20 cm) were collected. Inversion models were established using partial least squares regression (PLSR) and the back propagation neural network optimized by a mind evolutionary algorithm (MEA-BPNN). The results revealed that: (1) modeling with derivative-transformed spectra can effectively enhance the correlation between soil spectral reflectance and heavy metal content. (2) Compared with the BP neural network model, the estimation accuracy (R2) was improved from 0.728, 0.737, and 0.675 to 0.873, 0.884, and 0.857 using the MEA-BP neural network model. The residual prediction deviation (RPD) values for the three heavy metals Cd, Cr, and Pb using the MEA-BPNN model were 2.114, 3.000, and 2.560, respectively. Among them, the estimated model of Cd was an excellent prediction. (3) Compared with PLSR, the model prediction results established by the MEA-BP neural network had higher estimation accuracy. In summary, the use of diffuse reflectance spectroscopy to predict heavy metal content provides a theoretical basis for further study of the large-scale monitoring of soil heavy-metal pollution and its remediation evaluation in the polluted area, which is of great significance.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3