Effect of Thickness Ratio Coefficient on the Mixture Transportation Characteristics of Helical–Axial Multiphase Pumps

Author:

Han Wei,Li Xing,Su Youliang,Su Min,Li Rennian,Zhao Yu

Abstract

With the decrease of oil and gas resources on land, increased attention has been paid to multiphase oil–gas exploitation and the transportation technology represented by oil–gas multiphase pumps. The helical–axial multiphase pump has become the focus of research on oil and gas mixed transmission technology due to its relatively high operating efficiency and adaptability to a wide range of gas volume fraction changes. In order to investigate the thickness variation in the air foil from the hub to the shroud of the blade on the mixture transportation characteristics of the gas–liquid two-phase flow in a helical–axial pump, the thickness ratio coefficient ξ was introduced, and the hydraulic performance of the single compression unit with different thickness ratio coefficients was investigated. A single compression unit including an impeller, diffuser, inlet section and outlet section of a helical–axial multiphase pump. The hydraulic performance including the hydraulic head and efficiency was investigated by numerical simulation with the Eulerian multiphase model and the shear stress transport (SST) k-w turbulence model. In order to demonstrate the validity of the numerical simulation approach, the hydraulic head and efficiency of the basic model was measured based on a gas–liquid two-phase flow pump performance test bench. The simulation results agreed well with the experimental results; the error between the simulation results and experimental results of different inlet gas volume fractions was within 10% at the design point, which indicated the numerical simulation method can be used in the research. The thickness ratio coefficient ξ, which was taken as a variable, and the aggregation degree λ of the gas were introduced to analyze the gas–liquid mixture transportation characteristics of the pump. The thickness ratio coefficient was selected in a range from 0.8 to 1.8. The results showed that, for the same hub thickness, the head coefficient and efficiency increase, and the aggregation degree of gas decreases with the decreasing of the thickness ratio coefficient. The head coefficient of the modification multiphase pump was 5.8% higher in comparison to the base pump while the efficiency was 3.1% higher than that of the base pump, the aggregation degree of this model was the lowest, which was 30.3%; the optimal model in the research was the model of scheme 1 with ξ = 0.8. The accumulation of gas in the flow passage of the impeller could be delayed to the trailing edge of the blade by adjusting the thickness ratio coefficient, which produced a super-separated airfoil for helical–axial multiphase pumps and effectively ensured reliable operation under high gas volume fraction conditions. The accumulation area of gas was consistent with the area in which the gradient of turbulent kinetic energy was large.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference47 articles.

1. Comparison of Multiphase Pumping Technologies for Subsea and Downhole Applications

2. Technology and research progress of twin-screw type multiphase pump;Cao;China Petrol. Mach.,1999

3. Experimental investigation of flow patterns and external performance of a centrifugal pump that transports gas-liquid two-phase mixtures

4. Research on hydraulic design concept of an helical-multiphase pump and its experimental studies on performances;Li;J. Eng. Therm.,2005

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3