Abstract
Microwave ablation is one type of hyperthermia treatment of cancer that involves heating tumor cells. This technique uses electromagnetic wave effects to kill cancer cells. A micro-coaxial antenna is introduced into the biological tissue. The radiation emitted by the antenna is absorbed by the tissue and leads to the heating of cancer cells. The diffuse increase in temperature should reach a certain value to achieve the treatment of cancer cells but it should be less than a certain other value to avoid damaging normal cells. This is why hyperthermia treatment should be carefully monitored. A numerical simulation is useful and may provide valuable information. The bio-heat equation and Maxwell’s equations are solved using the finite element method. Electro-thermal effects, temperature distribution profile, specific absorption rate (SAR), and fraction of necrotic tissue within cancer cells are analyzed. The results show that SAR and temperature distribution are strongly affected by input microwave power. High microwave power causes a high SAR value and raises the temperature above 50 °C, which may destroy healthy cells. It is revealed that with a power of 10 W, the tumor cells will be killed without damaging the surrounding tissue.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献