Debonding Detection of Reinforced Concrete (RC) Beam with Near-Surface Mounted (NSM) Pre-stressed Carbon Fiber Reinforced Polymer (CFRP) Plates Using Embedded Piezoceramic Smart Aggregates (SAs)

Author:

Liu Yang,Zhang MingORCID,Yin Xinfeng,Huang Zhou,Wang Lei

Abstract

The application of reinforced concrete (RC) beam with near-surface mounted (NSM) pre-stressed carbon fiber reinforced polymer (CFRP) plates has been increasingly widespread in civil engineering. However, debonding failure occurs easily in the early loading stage because of the prestress change at the end of CFRP plate. Therefore, it is important to find reliable, convenient and economical technical means to closely monitor the secure bonding between CFRP and concrete. In this paper, an active sensing approach for generating and sensing stress wave by embedded smart aggregates (SAs) is proposed, which provides a guarantee for the secure connection between CFRP and concrete. Two specimens with different non-pre-stressed bond lengths were fabricated in the laboratory. Six SAs were installed at different positions of the structure to monitor the degree of debonding damage during the loading process. The experiments showed that the optimal length of non-pre-stressed CFRP bond section (300 mm) can significantly improve the load characteristics and enhance the service performance of the structure. The theoretical analysis of wavelet packet shows that increasing the length of non-pre-stressed CFRP bond section can slow down the occurrence and propagation of debonding cracks. The debonding crack in the tension end region is earlier than that in the bond end region. The research results reflect that the developed approach can monitor the damage process caused by debonding cracks and provide early warning for the initial damage and the debonding failure.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3