Abstract
In this manuscript, a resonator layer is presented for the purpose of reducing the mutual coupling effect between each antenna element of a cross dipole antenna. In design processes, an artificial neural network approach was used for various resonator designs. In the operating frequency band of 2.2–2.7 GHz, 48 different 6 × 6 resonator layers were created and integrated into the cross dipole antenna to reduce transmission and improve isolation between each antenna elements. Moreover, when training an artificial neural network in the Matlab program, 48 different resonator layers were used with the return losses and transmission values of cross dipole antenna elements. After training process, eight unknown resonator designs were tested and accurate results were obtained. Finally, one of the resonator planes, which was obtained from the artificial neural network, was fabricated and experimentally tested, then an accurate result was obtained. This study provides a good solution, especially for improving isolation in multiport antenna systems, using an artificial neural network approach.
Funder
the National Key Research and Development Program of China
the National Natural Science Foundation of China
the Fundamental Research Funds for the Central Universities of Central South University
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献