Object Detection and Classification of Metal Polishing Shaft Surface Defects Based on Convolutional Neural Network Deep Learning

Author:

Jiang QingshengORCID,Tan DapengORCID,Li Yanbiao,Ji Shiming,Cai Chaopeng,Zheng Qiming

Abstract

Defective shafts need to be classified because some defective shafts can be reworked to avoid replacement costs. Therefore, the detection and classification of shaft surface defects has important engineering application value. However, in the factory, shaft surface defect inspection and classification are done manually, with low efficiency and reliability. In this paper, a deep learning method based on convolutional neural network feature extraction is used to realize the object detection and classification of metal shaft surface defects. Through image segmentation, the system methods setting of a Fast-R-CNN object detection framework and parameter optimization settings are implemented to realize the classification of 16,384 × 4096 large image little objects. The experiment proves that the method can be applied in practical production and can also be extended to other fields of large image micro-fine defects with a high light surface. In addition, this paper proposes a method to increase the proportion of positive samples by multiple settings of IOU values and discusses the limitations of the system for defect detection.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multiscale Feature Fusion Convolutional Neural Network for Surface Damage Detection in Retired Steel Shafts;Journal of Computing and Information Science in Engineering;2024-01-08

2. Internet of Things Assisted Automated Ransomware Recognition using Harmony Search Algorithm with Deep Learning;2023 International Conference on Sustainable Communication Networks and Application (ICSCNA);2023-11-15

3. FSSDD: Few‐shot steel defect detection based on multi‐scale semantic enhancement representation and mask category information mapping;IET Image Processing;2023-11-13

4. Optimized Bayesian convolutional neural networks for invasive breast cancer diagnosis system;Applied Soft Computing;2023-11

5. Fruit Image Classification using the Inception-V3 Deep Learning Model;2023 International Conference on the Cognitive Computing and Complex Data (ICCD);2023-10-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3