Boundary Shape Inversion of Two-Dimensional Steady-State Heat Transfer System Based on Finite Volume Method and Decentralized Fuzzy Adaptive PID Control

Author:

Yang LiangliangORCID,Sun Xiaogang,Chu Yuanli

Abstract

A shape identification scheme was developed to determine the geometric shape of the inaccessible parts of two-dimensional objects using the measured temperatures on their accessible surfaces. The finite volume method was used to calculate the measured point’s temperature in the forward problem. In the inversion problem, the decentralized fuzzy adaptive Proportion Integral Differential (PID) control (DFAC) algorithm was used to compensate for the inversion boundary by using the difference between the measurement temperature and the calculation temperature. More accurate inversion results were obtained by introducing the weighted and synthesized normal distribution. In the inversion problem, the effects of the initial guess, the number of measuring points, and the measurement error were studied. The experiment calculation and analysis showed that the methods adopted in this paper still maintain good validity and accuracy with different initial guesses and decrease the number of measuring points and the existence of measurement errors.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3