Automatic Reproduction of Natural Head Position Using a Portable 3D Scanner Based on Immediate Calibration

Author:

Choi Min-Hyuk,Lee Sang-JeongORCID,Yang Hoon Joo,Huh Kyung-Hoe,Lee Sam-Sun,Heo Min-SukORCID,Choi Soon-ChulORCID,Hwang Soon JungORCID,Yi Won-Jin

Abstract

This paper developed a new method to easily record and automatically reproduce the 3D natural head position (NHP) of patients using a portable 3D scanner based on immediate calibration. We first optically scanned the patient’s face using a portable 3D scanner, and the scanned model was easily aligned with the global horizon based on an immediate calibration procedure using a developed calibration plate. The 3D patient NHP Computed Tomography(CT) model was reproduced automatically by performing registration between the CT model and the optically scanned model in the NHP using a modified coherent point drift (CPD) algorithm. In a phantom experiment, we evaluated the developed method’s accuracy using the error between the true and the calculated orientations in roll, pitch, and yaw directions. The mean difference was −0.05 ± 0.13°, 0.08 ± 0.22°, and −0.05 ± 0.18° in the roll, pitch, and yaw directions, respectively. The measured roll, pitch, and yaw directions were not significantly different from the true directions (p > 0.05). The calibration procedure for aligning the scanner coordinate system was easy enough for an inexperienced user to operate, and the 3D NHP CT model could be reproduced automatically. The developed method could be used for diagnosing and treating orthognathic patients with facial asymmetry accurately and conveniently in dental clinics.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3